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ABSTKACT

The wind fieid s investigated which is encountered by a missile
raveilng along a hypothetical trajectory downwind of a two-dimensional
ridge. FReasons are given for studying this situation in a wind tunnel,
. The problem is reduced to the determination of turbulence spectra and of
joint probabilities for the joint occurrence of two velocities simultane-
cusly along the trajectory which corresponds to mean flow conditions,

In the theoretical part an attempt is made to obtain approximations
to the joint probability density distributions which yield to experimental
evaluarion, The experimental part is concerned with measurements of pro-
tiles of mean velocities and turbulent intensities and with the . :termin-
ation of turbulence data for evaluating spectra and joint probability
distributions.
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A preliminary version of this report has been prese.ted at the Unguided

Bai'istic Missile Meteorology Conference, Las Cruces, Oct, 31 - Nov. 2,
L4067,

%




Chagter

I1

111

v

TABLE OF CONTENTS

INTRODUCTION

1.1
1.2

The Problem
Considerations on Modeling

THEORETICAL CONSIDERATIONS

1
.2

o n)

[\}]
(52

Rasic Assumptions

Simplifications of the Probabilistic Problem:
connecting probabilities along trajectories
Simplification of the Probabilistic Problem:
joint probability densities at a point

Some Considerations on Gaussian Twe Variable
Joint Probability Density Frmctions

EQUIPMENT AND PROCEDUR.S

3.1 The Experimental Setup

3.2 Measurement of Mean Velocity Profiles

3.3 Measurement of Turbulent Quantities

3.4 Determination of Streamline Locations

3.5 Measurement of Turbuience Spectra

3.6 Measurement of Probability Densities

3.7 Heasurement of Space Correlation Coefficients
Along the Trajectories

THE EXPERIMENTAL RESULTS

.1 Determination of Mean Missile Trajectories

4.2 Mean Velocities and Streamline Pattern

4,3 Turbuient Intensities and Shear Stresses

4.4 Turbulence Spectr: ap’' ‘issipation Rates

4.5 Probability Density distributions

TABLES

REFERENCLS

FIGURES

11

Page

o

[¥x}

~1

10

15
15
16
21

I

Lo

22

28
20
20
26

29




2 m o >

P =R

f(u'), f(v"),

f(u',v',w")

f0/T )

<+

LIST OF SYMBOLS

Real constant

Dissipation number

Mean output (d.c.) of voltage from hot-wire ancmometer
Universal constant

Length, dimension of the missile

Autocorrelation coefficient
Average observation time

Local mean velocity in X direction

Location of end point of the mean wind trajectory
Deviation from Xe
Fluctuating (a.c.) output of voltage form

Frequency

Probability density of u', v', w'

Joint probability density of u', v', w'
Conditional probability density of Vn given v

Height of the obstruction
Wave number

Reference wave number

Mean values of u', v', w!'

Static pressure at static tap position

Static pressure at dynamic tap position
Turbulent fluctuations in x, y, z directions
Covariance of u' and v!

Mean velocity vector

Velocity vector

iii

o emvu‘zm—_t;m, BT S T GRS L ML CT

R & RO S or T T e W

oY

._u:ﬁ,::;?' B



Fluctuating velocity vector
Coordinate system

Roughness height

Fiow attacking angles on the crossed hot-wire
Dissipation energy calculated from the specira
Dissipation energy calculated from differential circuit
Space 1ntegral scale

Rotatin_ angle of coordinating axes

The microscale of the turbulence

Kinermatic viscosity

Density of air

Correlation coefficient of two random variables
Variance of u', v', w!

Angle deviation of the flow from the free stream direction

Angular frequency




LIST OF TABLES

TABL® 1 Mean Velocity Calculation
TABLE 1I Turbulent Calculation

- iyt
TABLE 11} Calculation of 8 = 1/2 tan I _2uly

g M

u'_ V’




Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

~ Fig.
Fig.

Fig.

Fig.

Fig.

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

LIST OF FIGURES

Sketch of flow zones

Large wind tunnel

Pressure distribution curves

Block diagram for setup cf mean velocity measurements

Mean velocity distribution and streamline pattern

Hill model dimension and the coordinates of the flow field
Coordinates of the single and the crossed hot wires

Block diagram for setup of turbulent measurements

Location of test points

A typical continuous rms profile for single wire

A typical continuous rms profile for wire 1 of the
crossed hot wire

A typical continuous rms profile for wire 2 of the
crossed hot wire

u'? v'2 and u'v' profiles at selected sections.
Elock diagram for setup of measurement of turbulent spectra

Setup for measuring the probability density of a single
turbulent component

Setup for measuring the joint probability density of two
turbulent components

Probability density of a calibrated sine wave
Sketch for evaluating the conditional prcbhability density

Setup for measuring the space correlation coefficients along
the trajectories

Dimensional turbulent spectra of u'-component for test points
at x = 0 inch

Dimensional turbulent spectra of u'-com-onent for test puints
at x = 2 inches

vi

Bk i e s



Fig 22: Dimensional turbulent spectra of u'-component for test points
at x = 4 inches

Fig. 23: Dimensional turbulent spectra of u'-component for test points
at x = 8 inches

Fig. 24: Dimensional turbulent spectra of u'-component for test poirts
at x = 12 inches

Fig. 25: Dimensional turbulent spectra of u'-component for test points i
at x = 16 inches ’

Fig. 26: Dimensional turbulecnt spectra of u'-component for test points
at x = 24 inches

Fig. 27: Dimensional turbulent spectra of u'-component for test points
at x = 32 inches

Fig. 28: Dimensional turbulent spectra of u'-component for test points
a2t x = 40 inches

Fig. 29: Non-dimensional turbulent spectra of u'-component for test
points at x = 4 inches

Fig. 30: Non-dimensional turbulent spectra of u'-component for test
points at x = 8 inches

Fig. 31: Non-dimensional turbulent spectra of u'-component for test
points at x = 16 inches

Fig. 32: Non-dimensional turbulent spectra of u'-component for test
points at x = 24 inches

Fig. 33: Non-dimensional turbulent spectra of u'-component for test
points at x = JU inches

Fig. 34: Turbulent energy dissipation profiles at various sections

Fig. 35: Probability densities of the single turbulent components at
test points No. 12 and 14

Fig. 36: Probability densities of the single turbulent components at
test points No. 21 and 22

Fig. 37: Probability densities of the single turbulent components at
test points No. 24 and 27

Fig. 38: Frobability densities of the single turbulent components at
test points No. 28 and 30

Fig. 39: Probability densities of the single turbulent components at
test points No. 31 and 33

Fig. 40: Probability densities of the single turbulent components at
test points No. 36 and 37

vii

A A T




Fig. 41: Probability densities of the single turbulent comropents at
test polnts No. 3b and 44

Fig. 42: Probability densities of the single turbulent components at
test points No. 47 and 48

Fig. 43:  Jolnt probability densities of u'~ and v'-components at test ' i
points No. 12 and 14

Fig. 44 Joint probability densities of u'- and v'-components at test
points ho. 21 and 22

Fig. 45  Joint probability densitics of u'- and v'-components at tost
points No. 24 and 27
Fig. 46:  Joint probabiiity densities of u'- and v' components at test
& t B t
points No. 28 and 30
Fig. 47: Joint p:. ~bility densities of u'- and v'-components at test

points No. o. and 33

Fig. 48: Joint probability densities of u'- anu .'-components at test
points No. 36 and 37

Fig. 49: Joint probability densities of u'- and v'-components at test
peints Neo 38 21 40

Fig. 50: Jeoint probability densities of u'- and v'-components at test
points No. 48 and 48

Fig. 51: Plots of the measured probability densities on the probability
papers for test points Nc. 12, 14 and 21

Fig. 52:  Plots of the measured probab ity densities on the probability
papers for test points No. 22, 24, 27 and 30

1]
Fig. 53: Plots of the measured probability densities on the probability
papers for tost points No. 31, 33, 36 and 37
Fig. 54 Plots of (ac measured probability densities on the probability o

papers for test points No. 38, 41, 48 and 49

Fig. 55:  Comparison between the probability density f(w') and (he
conditional probability densitics f(w'/u') at test point

No. 21
Fig. 56:  Comparison bctween the probability density f(w') and the
conditiona! probability densities f(w'/u') at test point .
No. 30 -
Fig. 571 Comparison between the probability de~sity f(w') and the

conditional probubility densities f(w'/u') at test point
No. 37




Fig.

-
«

Fig.

Flg.

66

61

63:

64 :

66 :

Comparison bewween the probability density
conditional probability densities f(w'/u')

No. M4

Comparison belweeil the probability density
conditional probability densities f{w'/u")

No. 49

Jeint preobability density
trarectory launching from
cinuth

Joint probability density
trajectery launching from
azimuth

Joint probability density
trajectory launching from
dglmutl

Joint probability density
trajectory launching from
0" azimuth

Joint probability density
trajectory launching from
07 azimuth

Joint probability density
trajectory launching from
0 azimuth

of
the

of
the h

' and u.

£lwh)

at te

fiw")
at te

along

ana the
»st point

and the
st peint

the

1 >
Fy - N 0
top of the ridge with 60

t 1]
u and u,

along

the

top of the Fidge with 60°

u1 and u
halfway up ghe

u,' and
halfway up %he

1‘ and u,
alfway up fhe

along
ridge

along
ridge

along
rigge

Space correlation coefficients at var10u5 starting

alonL two selected trajectories

ix

with 0° azimuth

the
with

the
with

the
with

points




M Mg e g S e

B s Rty

e L SN T

AT AR

P A ¥

o L SRR N

Chapter 1

INTRODUCTION

1.1 The Problem

One of .he major problems in predicting the target hitting capabilities
of unguided rocket propelled missiles flying in the atmospheric boundary
laver is the interaction between the missile and the turbulent wind field
along its flight path. In the analysis of missile weapon systems, es-
pecially those used in short range (0-1 km) applications, predicting
target hit probability caused by gust winds, involves prior knowledge
.f the wind field along the missile's trajectory. We can formulate
tnis problem as follows: 1if the trajectory of a missile is given by a
deterministic curve determined by mean-wind conditions, we must find the
probability distribution of the perturbations of the trajectory end point
if the missile encounters random velocity fluctuations during its travel
along the trajectory. The fluctuations influence the flight path in two
ways. Vibraticns, caused by the gust spectrum might occur, and the missile
might be defiected from its course by large velocity fluctuations. For
obtaining instantaiieous wind measurements to calculate trajectories in a
turbulent wind field, the present experimental study was undertaken,

we chose the wind treld which exists in the wake downwind of a two-
dimensional obstruction with air flow separation at the downwind slope,
as shown in Fig. 1. The sinusoidal obstruction used in this study repre-
sents the model of a ridge. The wind field which exists in the wake of
a ridge is of interest in military cuwwat applications since ridges have
been used as part of a defensive line against an attacking force. If
missile launchers are emplaced alc..g & ridge, the target impact dis-
persion of missiles caused by the turbulent winds on the lee side of the
ridge will play a considerable role in battlefield strategy.

A full account of this wind field is difficult to obtain in the
field. The number of data points at which wind speed information is
required is large, and the variability of wind speeds 1in natural envi-
ronments would require e¢laborate and costly experimental equipment.
Therefore, it was suggested to study the wind fields that might be
encountered downwind of a sinusoidally shaped hill in the controlled
environment of a laboratory where many needed data can be taken one
after another instead of simultaneously, and where the reliability of

measuring instruments and data analysis equipment has reached a high
level.

In this report, we shall concentrate only on the problem of ob-
taining an approximation to the joint probability distribution for
a sequence of instantaneous velocity vectors along some hypothetical
trajectories. The analytical considerations are based on assuming cer-
tain models for joint probability distributions. The validity of these
distributions for the disturbed flow field downstream of & ridge 1s
demonstrated by means of experimental data obtained in the wind tunnel.
The observations were made for a steady mean velocity field obtained by
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blowing air parallel to a flat plate perpendicularly onto a model ridge
of sinuscidal shape.

1.2 Considerations on Modeling

The crucie’ problem in applying laboratory results for practical
applicaticns in a natural environment is the question of scaling labora-
tory conditions up to field dimensions. TFor flows of undisturbed tounda-
ry lavers, such as the wind along a boundary of constant roughness over
a long fetch, the modeliny has been achieved beyond reasonable doubt by
scaling accovding to the ratio of the roughness heights, and by keeping
the shear velocities constant. With these conditions met, both the mean
velocity conditions and the turbulence structure are approximately scaled.
For a boundary layer flow which is disturbed by a sharp edged obstacle,
Plate and Lin (1965) have presented an argument, based on the boundary
layer integral momentum equation, that the same parameters together with
the drag coefficient of the obstacle (as referred i~ some convenient
velocity, such as the geostrophic wind velocityj, suffice to model the
mean velocity field., As far as the turbulence structure is concerned,
no equivalent conclusions are as yet forthcoming, but some work by
Plate and Lin (1966) has pointed at the possibility that the modeling
of the dissipation number is an additional requirement. Moreover, no
conclusions have yet been reached on how the turbulence structure would
be affected if this number is not modeled accurately. Work is in progress
on this point at Colorado State University. It is reasonable to suspect
that modeling requirements will result in a scale factor for the dissi-
pation rates which does not differ very much from that for the mean
velocity.

With this assumption made, translation of laboratory data to field
data is a simple problem, provided that the drag coetficient of the
obstruction can be estimated. The procedure would be to determine the
roughne.s length and the geometrical pattern of the natural situation,
and then to prepare a scale moe 1 of it in the laboratory, setting the
roughness length in the laboratory at a convenient level by artificial
roughening of the wind tumi #1 boundary As long as the dimensicns of
the obstruction are such that it lies w11l within the lowest 1000 to
2000 ft of the atmosphere, and as long as the wind velocity is such
that the gross Richardson number of the prototype is not essentially
different from zero, and as long as the model is sharp edged, so that
the separation line is fixed, the condition in the laboratery should be
similar to that in the field

h h
('i-) = (?) (1

“model Ofield

In this equation, h 1is the height of the obstruction and Z, 1is the
roughness height.

For an obstacle which is not sharp edged, such that the separation
line moves with change in velucity, the Reynolds number affects the drag
coefficient, and compensations will have to be made for this effect., A
possibility exists in artificially tripping the boundary laver on the
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nbstruction so as to induce turbulence locally and fix the boundary
laycy separation line., However, such refinements have not been used in
this study, which is intended to fuinish gualitative information rather
than gquantitative design data and, in that case, it is unnecessarv to
substantrate the small improvements in similarity which can be had by
artificially inducing separation on the model hill., Thus, the problem
f scaling need not concern us in this study, especially since a com-
parison with field data is not possible at this time. e shall, there-
fore, formulate our probiem in more detail without regard to scaling,
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Chapter I

THEORETICAL CONSIDERATIONS

The two essentiallv different problems which arise 1n considering
the interaction of missiles and turbulent wind fields are that of missile
flight stability, and that of impac. dispersion, The difference of these
two problems can best be illustrated by considering the flight of a missile
through a homogeneous velocity field of infinite extent. A missile which
flies at constant speed encounters a spatially random velocity field which
is, with respect to a coordinate system traveling with the missile, con-
verted into a random and stationary time series of the continuous variable:
velocity. If the missile has a transfer function H(w) , then the missile
response velocity spectrum ¢ {(w) 1is related to the impact wind-gust
spectrum Qw(w) by the relation of

o) = 1) ? 0 ) (2

Thus, since the transfer f'mciion fH(w)f is a deterministic functicn,
and since ¢ (w) for an infinitely long stationary record denotes the
exact average behavior of the wind field, ¢ _(w) 1is also an exact average
measure of the missile response. If none of the response amplitudes ex-
ceed the stability limit of the missile, ther only some fluctuations of
the missile occur; if some do exceed the stability limit, the missile
micht change course drastically and miss its target by a wide margin.

The s.ability can usually be evaluated on the basis of the average be-
havior expressed by Eq. 2. In this paper, we shall provide experimental
data on wind spectra, which can be used for missile stability calculation
purposes.

In contrast to stability, the dispersion of a missile results from
an integrated effect of all the velocities which are acting on the missile
in its course along the missile trajectory. Since these velocities are
fluctuating from instant to instant, and can be described only in a proba-
bilistic way, the missile dispersion cannot be predicted determinis.ically.
Instead, the missile dispersion probiem is the problem of determining the
probability distribution of the missile trajectory end point as a function
of the sequence of all the velocities which the missile encountered along
the trajectory. The distribution of the end point of the missile then
bircomes a function of the joint probability distribution for all the
velocities along the missile trajectory.

In this report, we shall disregard the characteristics of the
migsile and shall concentrate on an attempt to describe the joint proba-
bility distribution for the velocities along some hypothetical missile
trajectories in a simplified manner. The theoretical ideas will be
developed in this chapter. They lead to a p ogram of measurements of
probability distributions which was performed in the Fluid Mechanics
Laboratory of (Colorado State University,
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Since it is impossible to obtain the true joint probability dis-
tribution for all velccity vectors along any trajectory, a simplifying
procedure has to be adopted. We proczed by introducing some simplifying
assumptions wu. " represent the turtulercze encountered by the missile
by the instantaneous turbulence existing calong the mean trajectory.
Furthermore, the trajectory is subdivided into sections and it is assumed
that the turbulence in each section can be represented by the turbulence
at the end points of the sections. For the ensuing sequence of velocities
at the section end joints, the joint probability density function is then
cons:ucced and broken down into a product of functions which can be
determined by means of available experimental techniques. No attempt
will be made to apply the ensuing functions to the missile dispersion
probiem,

2.1 Basic Assumptions

The problem of evaluating the instantaneous missile trajectory is
approached in the following way. Let the mean trajectory of a missile be
given, and use the reference coordinate system as shown in Fig. 1 fo- our
problem, Then on its travel along the trajectory the missile encounters
mean velpcitiss and a sequence of gusts, both described by a velocity
vector v(s;t) , where t 1is the time of flight, and s 1is the position
%egtor of the trajectory. The velocity yector consists of a mean v-locity

(s) and a fluctvation in velocigy v'(s;t) . The position vector con-
sists of a mean position vector ¥ corresponding to an absence of all
velocity fluctuations (i.e,, the trajectory due to mean wind only) and
a small deviation 3 -3 due to the sequence of fluctuating veiocities
which the missile has encountered during the time t

Now, let the trovel time until impact be equal to t. and the end
point of the mean wind trajectory be located at x . Then due to the
sequence of wind fluctuations encountered during i¥s flight, the missile
is deflected in the impact area by a total deviation r'!' from the target
distance x . Due to the random nature of the fluctulitions encouniered,
the r! wifl atso be randoml; distributed. The probability distribution
of thctquaﬂfity r’ 1s the desired quantity to which the results of this
study must be appl%ed.

The metvorological problem associated with finding the probability
distribution of ' is to make available Kknowledge of .he instantaneous
velocity field whith the missile might enceunter on 1ts course. Clearly,
this problem cannot be solved by presently available techniques. In-
stead, 1t is proposed to cbtain joint prebability distributions for the
simultaneous occurrence of a sequence of velocity vectors along the
missile trajectory. In general, this requires specifying joint proba-
bility distributions of the jeint occurrence of velocities at infinitely
many different points 1n space and time. In order to reduce this problem
to tractable dimensions, a number of assumptions have to be made.

The tirst assumpticn is that the distance of any instantaneous
trajectory from the mean trajectory calculated on the basis of the
mean wind distribution i1s smill, so that

Vi(s;t) o= ovTiEt) P2




In this manner, it is no longer necessary to consider the whole space

but one can concentrate on the single trajectory. Obviously, the validity

of this assumption depends both on the relative magnitude of v’ with
respect tc v , and on the res»onse characteristics of the missile, and
will have to be tested each time.

The second assumption concerns the time distribution. e assunme
that the missile travels much faster than the velocity fluctuates, so
that

(93]

)l g't = \’,l’:’.
v'(s;t) {(s;t ) (

where t  denotes the stort time. This assumption implies that during
the FlipRt time the relation holds:

vi(3;t) \;'(§;to) ~ vi(S;t ) vi(S;t )

or that, in the average for n different starting times 4

. n n

1 . + - > > 1 - - > N

- I vi{3;t) v'(3't ) = = O (v'(z;t .) )

oo oi n . ol

1=1 i=1

If the flow is stationary, and if the ergodic hypothesis is valid, then
we can restate this requirement as:

R = 1 [
where

R is the autoccrrelation function defined by:

- — >
S AN S tt-t ) ) oSt de
o i 9] C Q
R = k'\t -ty T o 5 — A . ‘
T X o A ke .
- vito(s Lt )
o
where
T is an obscrvation time tasen lonyg enough to ensure & stable

average, and

oty s the time during which the missile has travelea fronx
RN
X to x*
0

* Jo,convert actug},travol times to model trave! tirmes, the soaling i
R¥] i . . . . !
[ o R iy must Mo oused, whaidh, for oat S .
z z ~ —ode ] Sl
o model o field

reduces to t =t . o model
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For small times tx_to lq. 4a becomes:

(t -t.))"
RO~ 1 - 2 2 (4b)
!
g
where lg is the microscale of the turbulence. The scale X can be
replaced to a good approximation by the scale Ag of the u-component

of the turbulence

- 1 u' | 2
A = ( ; ) . (5)
g 2 ur? ot t=0

Consequently, it follows that to-ty << Ag for the assumption Eq. 3
"to be valid.

2.2 Simplifications of the Probabilistic Problem: connecting proba-
bilities along trajectories,

We base our calculations on assumptions Eq. 2 and Eq. 3, and, thus,
we have reduced the meteorological aspects of the problem to finding
simultaneous instantaneous velocity distributions along the mean tra-
jectory X . To avoid the implied necessity of determining velocities
simultaneously at infinitely many different points, we adopt the follow-
ing probabilistic specification of the velocity field. The required
quantity is the joint probability density distributicn

£, = f(vV' , ¥
[o]

; ,\75.....\7') (6)

'
1 n
for all n points along the mean trajectory. The experimental distri-
bution of fi requires simultaneous measurements at all n points of

the trajectory, i.e., it requires an infinite array cof probes placed along
the trajectory. Evidently, this is an impossible task, so that instead,
the trajectory is cut into n finite intervals, of length Ax , at

whose end points turbulent quantities are measured. In each interval

Ax = X, 4-Xg the instantaneous velocity is assumed constant and equal
to:
R e ' 1w
Vi o= usi *viiot wik (7)
when the components wu! , v.! and w! are average valucs of the velocity i
components at the two énd poiﬁts. From the values of v! , the tra- ‘

jectory is calculated.

The problem to be solved then is to convert probability distri-
butions between adjacent points in such a way that a meaningful approxi-
mation for Eq. 6 is found. We want to investigate three smiple cases
of possible approximations for Eq. 6.

e
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a. Consider first the assumption that f(v! ,) and f(v!)
are statistically independent, This condition co}reSponds to vélocities
which vary comparatively rapidly along the trajectory, in the sen:e that
R_7~ 0 where R_ is the spatial correlation coefficient obtained from
tKe definition
X

e xex) Vit x) dx

i+17%) 7 A (8)
X5 /v'2(t ,x. VV'?(t

1+1

However, the assumption of rapidly varying velocities is in contradic-
tion to the assumption of a velocity vector which is constant throughout
the travel interval Ax , unless Ax is chosen in such a way that a
meaningful relation bctween it and the space integral scale :75 exists,
where:

]s =j Rx dx . 9

Also, in order to be of influence on the flight pattern, :r must be
large compared to the length dimension L of the missile, Zuch that a
condition for the validity of this assumption might be defined as:

px= 7, and L 1 say <0.1 (10)

Ts
Under these circumstances, Eq. 6 reduces to

Ve, V) = f(v') £V vi). f[v' N f(v) (11a)

-»> -+
f(V'o > v n-1 n

!
IEREE
or in terms of conditional probability densities:

ECV 1Yy 5 ¥ geeee )= £0V)) (11b)

This equation can ,be evaluated conveniently, if the probability density
distributions f(v’) are given, These correspond to joint probability
densities for thosd variables u’ , V! and w.,” , vhich will be
discussed below in Section 2.3, * !

b, As a second possibility, we considered the condition
> X -
:rs e %
in which case the correlation coefficient defined by LEq. 8 assumes a

alue very near to 1. This implies that the velocities v'(t y X )
v! (to, 1+1) are very nearly proportional, so that i

VIt , x. ) =AV' (t, x.)
o' Ti+l’ T o’ i (12)



where A is a (vector) constant., Furthermore, the jpdf defined by
Eq. 6 becomes:

-»

N » 'P' = —b'
G I AT AY. flv)) (13a)
or in terms of conditional probability densitic

P -' oy -
£(v! | VI Vg e ) =1 (13b)
Again, the discussion of a method for calculating f(cé) is postponed
until Section 2.3.

c¢. The assumption of a and b bracket the possibilities for
simplifying the joint probability density functions of the turbulence
along the trajectory. An intermediate method, based on the assumption
that the eddy structure of the turbulence is highly elongated, (as is
usually the case in turbulent flows) would combine assumptions of in-
dependence of the motions perpendicular to the mean wind direction with
an assumption of some dependency of the components in the wind direction
along the trajectory. The simplest way is obtained if a Markoff de-
pendency can be found to relate probability density distributions along
the trajectory, i.e., if

- > -»> - - >
' ' ' 5 "y = ] '

f(\r.l | VIg s VigeeesiVis vo) f(v! | v _1) (14)
when f(V; I 3{_1) is the conditional probability density for the
occurrence of 3{ when Vi_l has already occurred.

The elongated eddy structure leads us to assume that what happens
at point X4 depends on the happenings at X5 _ only through the wu!-
component, 1.e., the components vi and wi “are independent of all
components at the point x, except inasmuch as they depend on u! ,

which in turn depends only on the component u! ; andnot on v, ; and

Wy Write Eq. 14 in the form:
f(\;i [ ‘;i-l) = f(u} | ut ) fv! [ ul) - flw} | ul, v) (15)
where f(w! | u!, v!) denotes the conditional probability density for

finding w{ whén bdth u{ and v{ are assumed to occur also,

We can now summarize the results for the three approximations of
Eq. 6 as follows:

!ndépcndcncé (Case a)

FVEIL Vigs Vigseees Vo) = f(vt)
so that
- _‘__-b ->
FOVe, Vi gs Vip- .vé) = L(v{) f(vi_l)....f(vé)
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Dependence (Lase b)

ol
f(vi .

i-
so that

Fvis v

Markoff dependency (Case cj

, .
v! v' v,
£l 1 ! i-1°

so that

f(vi, v

= F(V))F(V)

i-1°
whicu simplifies further for the elongated eddy case to Eq. 15.

2.3 Simplification of the Probabilistic Problem: joint probability
densities at & point

All three cases discussed above require the determination ¢f
probability density distributions of the form: f(v') . Since v!
is a vector consisting of three components, ﬁ(v ) s actually a
joint probability density function for the 301ntloccurrence of u!
v! and «#! . Such a triple joint probability density function is too
dirficult to determine experimentalily. We, therefore, write

s ! E
f(ul, v!, wi) = fuy) £lvi | uf) f(w! | ul, vi) (16)

in the form
t '
f(ui, v{ wi) f(u{) f(v.1 | u{) f(w{)
and Eq. 14 in the form

£(v! } vio) o= flu | ut ) flyy | ut) £(w})

which are based on the following assumptions:

a. The velocity component w! is statistically irdependent of
all other velocity componénts.

The connection between adjacent points takes place only through
u{ and is at most first order Markovian.

Assumption a. is partly justified because the homogeneity of the
turbulence in planes parallel to the ground, in_a two-dimensional flow
ficld, requires that the time average product ui w{ = 0 which is a
necessarv, but not a sufficient condition for statiStical independence.
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The firsr part of assumption b. is postulated without any firm
basis excont for tiic motion of an elongated eddy stated previously,
For the second part, however, we have some support, both from meteo:-
ological data as well as for the laboratery case of the present study,

For a Markeff Jcpendency to exist, it 1s a necessary and sufficient
condition that, if the varisgbles u! are stationarv with respect tc i
and Gaussian, and are a'so jointly Gaussian distributed
correlation between u! u! ul

1 u R
O 1+1 i+2

, then the cross
1s an exponential function
in the parameter 1 (p. Y6, Feller (1954) n. 234, Doob (1253)ji.e., in
the continuous parameter case

A
S SAX s ,
RIX] = © R{0) x 0 {19)
where A has 4 non-ncgative reazl part, if R{x}) 1is known to be con-
tinuous. Conversely, a sequence with stationary Gaussian distributions

satisfyving fq. 18 is Markovian and Eg. 14 can thus be used.

The applicability of a Markoff process to turbulence data is thus
insured if it can be shown that

a. the space correlations are homogeneous, i.e., independent
from where the correlation starts.

b. the space correlations are expcnential,

c. the probability density distributions for the functions repre-
senting u' are Gaussian,

Some proof for the validity of these corditions for our laboratory flows
will be given in the next chapter. For atmospheric turbulence in neu-
trally stratified atmospheric boundary layers over homogeneous terrain,
these conditions are approXximately satisfied. 1In the older meteorological
literature (for reference sec Pasquill (1961)) the autocorrelation functions
were usual’v found to be exponential. Together with Taylor's hypothesis,
according to which time correlations can be translated into space corre-
lations by means of the substitution t = é , (where U 1is the local

mean velocity), it can thus be shown that gpace correlations are expo-
nential. Meteorclogists have in recent times (Lumley and Panofsky (1964))
preferred to use different analytical representations of the correlation
functions, for the simple reason that the spectrum corresponding to an
exponential autocorrelation decreases at large values of angular fre-
quencies w propertional to w” whereas the spectral shape should
contain an inertial subrange, with a drop-off proportional to w™>/3
The difference between 5/5 and 2 is, however, not large enough to
give a strong reason for discarding the assumption of aii exponential
decay of the autocorrelation function. For our prediction purposes, it
docs, therefore, scem to he justified to assume that an exponential auto-
corrclation funccion exists in neutrally stratified atmospheric boundary
layers over homogeneous terrain. In a later section we shall show that
an appreximateiv exponential space correlation function which is homo-
gencous along trajectories parallel to the ground can be found even in

ok
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the highly disturbed flow fieid downwind from a mode! ridge. Since we

also find that almost all velocity components follow Gaussian distribu-
tions, the Markoff dependency postulated for Eq. 15 is reasonably well

established experimentally.

2.4 Some Considerations on Gaussian Two Variable Joint Probability
Density runctions,

When the joint probability density functions of the quantities of
turbulence at one point are Gaussian, then this distribution function is
fully specified by the means and the turbuience quantitie: u'? = y
v'~ = f\‘ , W= o as well as by the cross correlaticns, for example
u'v' . These quxntltlus are most important also in desc rlbwng the dy-
namic conditions of the turbulent flow, i,e., they represent stresses,
and it is, thereforc, of interest to show the connection between the
probability density functions and the stresses.

Theoretically, if all the probability densities of individual
turbulent components are distributed in a Gaussian {urw, then:

-{u'-m ')?
u
RECIREE
f(u') = —r e u'
vré—”- C '
u
v'—mv,)2
20 ,°
Fv1) = 2 e v (20)
ﬁifov,
(o 2
(w .mw )
20 °
F(w?) = 1 e w!
2n o

w'

The joint densities of two turbulent components can be expressed by a
joint Gaussian form, i.e.,

1 e "Q(U',V')

f(ut,v') = (21)

27 0
u

for some constants Our 0 . o o 0 , p<1 , o« m < 4o
-o <m , <+ _ in which the function Q(u', v') for any two real
numberx u' and v' is defined by
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clutm VY wrtem vrem V[ vrem N2
| 1 i ' ;1 t
Q{f‘]' \,') - __‘1 _ }({_‘ R qul u }f v 4[ vty
2(1-p I -\ s : /
(I-p ) \\ Y |’ \ u' /\ uv' \ Tvv
. \ . L. u'v' 2
where o 1s the correlation coefficient wwmemrmm- = ¢ = 0°  and
yutz  Jyvt? u
a;, arc the variances of u' and v' | respectivelv and M and
m,, are the mean values. The curve Qfu', v') = constant 1is an ellipse
since o - 1

In order to find the orientation of the ellipse, the coordinates

u* and v* ot the coordincte system parallel tc the axes of the
ellipse-

u* u' cos o+ v' sin i

H

v -u' sin  + v? cos &

are introduced. Applying the Jacobian transformation to the probability
density, Eq. 20, wc obtain
- f{u*,v')

]J(u’,v')f

fiu*, v*)

(23)

i

flu*cos & - v* sin 6, u* sin 6 + v* cos 8)

which follows from the fact that the Jacobian:

gu* ou*
su' oav!
Jut,v') = = 1
(ut,v') ov* ov*
ocu' ov!
For further simplicity, we may assume M y= M= 0 then,
4
1 1 f cos?6 0 cos8sind

flu*,v¥) = exp § - -2
27, 0 /1-p? 2(1-0%) Al

u' ' u' Tury
sin'* o
D
a "
v
(24)
Ccostt sinc sl cost sind
-2 - ! - u*v*
z pl
J g ., 9 o
u’ u' ! v'}
/ il
. . > !
sin: £ cost  sine cos*v\ N

+ 2p + o
Yur TR “v"/

P
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because of the symmetry of the ellipse with respect to the new axes, the
terw involving u* v* should vanish, i.e.,

»

cosd sind sin?8- cos?e cosd simf_ _ .
2 2
gu' Ou‘ 0v' Uv'
or (25)
2p0 0
. u' v'
tan 20 =
~ < _ 2
“ur Vvt

This can be written in terms of thc turbulent stresses by means of the
relations:

0 cov (u',v') - uv
O Oy 0Ty
and
S, tan 28 = —_?--l-‘tl—"—'_.- (26)
ul. yi2

With this relationship, the joint density function of the turbulent com-
pc~ents can be defined once we have the values of the associated turbu-
lent stresses. For example, the Eq, 18 can be established by measuring

u{zl , ul? w2 w2 yr oy and u! ,u! . For its application,

i i’ 1 i i 1-171
we have, however, to show that the individual components are Gaussianly
distributed and that the joint probability distributions follow Eq. 19.

We notice in passing the equality between Eq. 26 and the inclination
of the plane of gzgro shear gtress in a plane stress state of classical
mechanics, if u'? and v'¢ are the normal stresses and u'v' 1is the
shearing stress (due to turbulence), Clearly, then, the angle 9 denotes
the orientation of a plane at a point in a fluid when the shear stress is
zero, so that the joint probability distribution is found to be oriented
with the long axis of the ellipse of constant correlation parallel to the
zero shear stress plane.
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Chapter IIl

EQUIPMENT AND PROCEDURES

3.1 The Experimental Setup

The experiments were performed in the U.S. Army Meteorological
Wind Tunnel in the Fluid Dynamics and Diffusion Laboratory of Colorado
State University. This facility is shown in Fig. 2. It is a recir-
culating wind tunnel with an 88 ft long test section with a 6 x 6 ft?
cross section. For the experiments of this study, the model hill was
placed at a distance of approximately 40 ft downstream from the inlet
where the undisturbed bhoundary layer, stimulated by large roughness
elements in the inlet region of the test section, had an undisturbed
thickness of about 24 inches. The model hill consisted of a plexiglass
section with a shape n given by

y = h cos %ﬁ for - :

X -
- L

to]
) —

(27)

where the base width L = 20 in, and the height h = 4 in. Th~ velocity
outside of the undisturbed boundary layer was 30 fps.

3.2 Measurement of Mean Velocity Profiles

Mean velocity profiles were measured both by hot wire anemometer
and pitot tube, in order to obtain a cross check. In the upper part of
the flow, continuous traverses of velocity were taken, In the lower part
or in the separation region where the variability of velocity was large,
point by point data were taken in order to determine the velocity pro-
files more precisely.

The hot wire measurement of mean velocity was made with a 4 x 107"
inch diameter single wire which was held perpendicular to the local mean
velocity vector 0 . The hot wire anemometer used was made at CSU.

By means of the pitot tube, total head readings were obtained for
calculating mean velocities. [If there is no pressure gradient in the
flow field, the ocal mean velocity can be calculated by

1 =2

= Jp
79 7 P (28)
AF\B = pressure difference between the static tap and

dynamic tap of a pitot static tube,

But in th. neighborhood of the model ridge, large pressure gradients
exist, not only in y-direction but also in x-direction. Since the
static tap is one inch downstream from the dynamic tap on the pitot
tube, a correction must be applied for the pressure gradient between
the two taps. Since
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2 . - .
oUZ = aPyp - (Py- Py) (29)

p = density of air at the room temperature
U = local mean velocity
APAB = the measured pressure difference

PA = the static pressure at dynamic tap's position
PB = the static pressure at static tap's position

PA- PB = pressure difference between the static tap and the
dynamic tap.

If PA - PB is know.i, the local mean velocity at one point can be cal-

culated from Eq. 29. At each point the value of PA - Py can be ob-

tained from Fig. 3. This figure was made by connecting the static tap

and a reference tap to the pressure transducer (Transonic Type 120 Equibar).
Since the static tap is one inch downstream from the dynamic tap, at one
peint the coordinates of the dynamic tap is known, say (x,, y1) then

the static tap 1s (x1 + 1, yl) . When the coordinates of twd points are
known the pressure difference PA - PB can be obtained from Fi;. 3 and

the corrected mean velocity at that point can be calculated by applying

Eq. 29.

To measure the mean velocity profiles the pitot tube and the hot
wire were mounted on a 24 inches vertical carriage. The dynamic tap of
pitot tube and hot wire were held side by side at the sume height. The
velocity profiles were taken every two inches downstream from the crest
up to x = 18" and also at x = 24", 36", 40

The block diagram of set up is shown on Fig. 4. The calculation of
tue mean velocity is listed on Table I and the results are on Fig. 5.

When a hot wire was used o measure the mean velocity, the cali-
bration curve of this wire was checked from time to time and the wire was
recalibrated if excessive drift of an anemometer was detected, [t was
found that after a hot wire had aged several hours the drift of the wire
was negligibly small.

3.3 Measurement of Turbulent Quantities

For coordinates of the flow field as shown in Fig. 1, the turbulent
components at a point in x, y, ¢ directions are u', v', w', resnectively.

The u'-compunent was calculated from a single hot wire held parallel
to 2z axis (Fig. 6). The v'-component was calculated from a crossed
wire held in the x-y plane (Fig. o).
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In the subsequent discussion, we shall use the following notation:

: == >
5 u = V/U t<e R v = vv! and
¢ w = vﬁjf is the rms value of the fluctuating velocity component
P in the x, v, z direction, respectively
‘ uv = covariance of the fluctuations u' and v’
ey 5 7 vert vel? are the rms values of the fluctuating i
» ‘ - voltages e) and eJ measured with :

wire No, 1, or 2, respectively,

a. Calculating of u-compenent of turbulence,

i To calculate the u-component at one point, sav, (xl, yl) we need

? the following information:

1. tie rms value of a single wire at (x, y),

<
o

the calivration curve of this wire,

i 3. the local mean velocity U at (x, y)

" 1, the slope of the calibration curve g%- at U then:

L_dE
'i: v m
'
or
u o= [ e (30)
- ‘ P h E <
iat/ ~

The u-compenent at a poiat  (x, v} was calibrated by Eq. 30,

b. Calculating v and uv components of turbulence,

It the crossed wire is held in the x-v plane as shown in Fig. 7,
then we find in g¢oneral that

dE,
1 : A
e, = - — v{u’'cos 1+ v'sin a}-
! Cos a du ( ’ )
(3N
1 dt, . .
€y = oo < ovfutcos ¢ o~ v'sin al
dey dt
; P = e he 1o N . oy -t ~y 2 o
where i and T Are the slopes of the calibration uarve for wire |

and wire I, vospectivels

. bquation 31 can be written as




o

—

a'v!' cos oo osin oo o+ vt osinta)

/ 2
2 i LdE\ -2 o -

e = I (u'cos a +
2
COS°3 \
, (32)
“dE_ 2
2 1 Y : o im i+ s sins:
e," = LIT (u'“cos & + au'v' cos 8 sin & + V't sin-3) .
cos’g |
In order to account for small deviations of mean velocity vectors from .

the horizontaul we write:

a = 457 +

€3

o

B8 457 -

where ¢ is the small deviation of the angle between the mean velocity
vector and the horizontal, as determined from the streamline pattern.
Then, for small & , so that rms in ,° <can be reglected, and

cosep 1 | sing=

COS a = COS (450 + o) f ;:vtl-:)

a1 _
COS"3=T]" M
B (33)
Sin a & = (1+:)
. 1
SIN“y = w 4
also
L2 o
COs v = ¢ {l+s} COS 0 2 o+ 2
. N - v? N . 1 ’
sin R = & (1-2} SIntro= o5 -
Substituting kg, 33 inte Lq. 32 vields
[ Vo
-1 Fdu - 1 —— It
ety - ¢)§EE‘ SR S T T R S IR
- 2 - -
“ RSB
Lo, = | \ ' .
u (‘r- . UV o+ VT e v L
Cap L2
‘,’,1 dU, 1 - 1 ~ -
¢y ) g } S S B U RS C 135
L -
The difference of kg. 34 and bg. 55 then vields
. - S U SR A ! . )
uv = -rl.ar (,‘1 R - O, e v ) Yol
< dE N 2T, 203
| 1 2
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Inserting Eq. 36 into Eq. 34 leads to

2 .1 2 [du_ |2 2| du_ |2 2 37
A RSO i - * e 1 Y (37)
2
2| dU 2| du
SRS RS UR Y B N -

Since, in our experiment both wires were of the same le¢:gth, the slope of
the calibration curves of both wires for the same U w:re the same, i.e.,

: du du du
at a point = e = . Then Eq. 37 becomes
dE| dE, dE
v2 = L du * (e,2 +e,2) -u? - ¢ dy 2(9 2 .e,) (38)
2| dE 1 2 dE 1 2
and Eq. 33 yields:
.1 dy? 1 1
LT 2 2 2,2
UVT iy g7 ) (3-0) - e (3+0) + 62 - v2) (39)
Substituting ky. 38 into Lq. 39
- 1 2 2y du? 2
uv = 7 (e,%- ¢e,7) qE - 2 ¢V (40)

If ¢ =0 1i.e., the velocity vector is in x-direction Eq. 38 becomes

1 dy ? —
vz g (ef v e?) - (41)
and Eq. 40 yields:
- 1 z 2y du?
uv = E-(e1 - e, ) IE (42)

Equation 41 and 42 are the well-known equations on calculating uv and
vZ when the velocity vector is in the x-direction. Fu:, in our study
when the wind is flowing over the hill the velocity vector may deviate
from the x-direction. Therefore, Lqs. 38 and 40 were : sed to calculate
the Uv and vZ2 when ¢ 4 0 . The angle ¢ at on. point was
estimated from the streamline pattern shown in Fig. 5. How the stream-
lines were determined will be discussed later.

For crossed wires, when ¢ = 0 i.e., when the - :2locity vector is
parallel to the x-axis, the angles of inclination gethen wire 1 and
wire 2 and the x-axis are the same and equal to 45 (b th wires were very
carefully mounted perpendicular to each other) In or :r to make sure
that both wire 1 and wire 2 were held under 45  to x-a is during the
experiment, first, the wires were held in the free str. am, when the
(ambient) velocity is in x-direction. Then, the cross 1 wircs were
rotated 180" about the hot wire probe axis. If the ou nuts of the wires
were different after this rotation, an adjustment in t » angle of the
probe with flow direction was made until the anemometer readings of both
wires were invariant to rotation about the longitudinal axis.

e e =



The block diagram of the set up for measuring the turbulence is
shown in Fig. 8. A single wire and a crossed wire were mounte:! side by
side at the same height on a 24" vertical carriage. The clevation of
wires could be read off as a voltage across a potentiometer geared to
the positioning shaft and was either read out from a digital voltmeter
(DVM) or plotted on an x-y plotter. At each section, data were taken
at 55 test points shown in Fig. 9. Also, at each station x = constant
continuous data profile plots were obtained on an x-y plotter. The
test points were chosen so that they included:

a, points on the trajectory, i.e., points on the trajectories
at the distances x of the measuring stations,

b. points ncar where the maximum change of rms value of u'
occurred in each section.

At each of the test points the rollowing data were taken:

a. The rms values, i.e., the fluctuations in voltage of a single
wire and of two crossed wires. All three rms values were re-
corded by x-y plotters versus time and were also read directly
from true rms meters as a reference.

b. 5-minute turbulence recordings for energy spectrum and proba-
bility analysis. A ilincom (Type Cl100) 7 channel FM tape recorder
was used to record the turbulence for both single an:d crossed
wires (3-channel simultaneous recording). The outpu: of the
CSU-made hot wire anemometer has a dc level of one volt and an
rms value of the order of 0.05 volt. The dc level was too high
and the rms value too low for best operation of the tape recorder.
Therefore, an ac-amplifier was used to amplify the fiuctuating
voltage and to eliminate the dc level. Furthermore, an atten-
uator was connected between the amplifier and the tape recorder
to adjust the recording voltage to 0.5 volt rms.

The intercounections of all instruments are shown in Fig. 8. The rms
values of the wires obtained from the rms-meter (RMS II) before the
amplifier and attenuator (A+A). The recording voltage was read from
‘RMS II of Fig. 8. ‘

Besides the data which have been taken at each test point, the -on-
tinuous rms values for all three wires were also recorded on an x-y plotter.
Figure 10 is a typical continuous rms profile of e_ fur a single wire

at x = 12" . For the same station the rms profilds of ) and e,

for wire 1 and wire 2, respectively, are shown in Figs. 11 and 12.

As long as the rms values for single wires and corssed wires were
known, the turbulence components wu)v' and the turbulent shear stress
uv could be calculated from Eq. 3, Eq. 11 and Eq. 13, respectively.

The measured rms values and the calculations of u? , v2 and
UV are shown in Table I1. The profiles of these quantities are plotted
in Fig. 13.



3.4 Determination of Streamline Locations

“dean strcamlines can be drawn so as to be always tangential to the
vectors of fluid velocity in a flow. Since a separation bubble existed
ncar the downstream side of the model, it was found desirable to first
dctermine a reference streamline in the outer part of the flow by joining
the direction of mean velocity vectors from station to station, and to
obtain lower streamlines by integration, i.e., the integral \u dy = constant
below the retercnce streanline defined other streamlines.

The first streamline was found by using a hot wire in the following

arrangement. The hecat transfer from hot wire to air depends not only on
the magnitude of the velocity, but also on the flow direction with respect
to the wire. The heat transfer from the wire is maximum when the flow is

perpendicular to the wire, minimum when the wire is parailel to the flow.
By rotating the hot wire and plotting the output of the hot wire anenometer

versus the rotating angle on an x-y plotter, a well-defined minimum was
found which could be used to define the flow direction.

The starting point of the reference streamline was arbitrarily set
at x_ =0, Yo = 9.1" , the height of the second point was estimated by

o
" - s 43
Y1 =Y, 20 sinla (43)
Aa_ = the dircction of local velocity vector to the
o] . A
free stream vector at first point
2,0= the horizontal distance from the first point to
the second point
Yo T height of the first point

In general the height of the point Y, at station x  can be cal-

culated from the n-1th point when the height Yno1 ° the angle Aan-l

and the distance ln-l are known, We have

Yo = Yoo " Ynp Simde (44)

The first reference streamline was estimated in this manner, with the re-~
sult shown on Fig. 5.

It is evident that this is not too satisfactory a method for deter-
mining the streamline. The method was difficult and time consuming, and
wrought with error due to the fact that the error in estimating the height
was cumulative. Therefore, a different method was used, wherc integration
starts at the floor. It is clear that outside of the separation region
the streamlines can be determined from velocity profiles by iitegrating
up from the lower boundary.
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According to continulity tae {low rote between two stroanlines at any
section must be the same. [t is known that the lewer boundary is o streoamline.
The lower boundary consists of three parts

{a} Dbefore scpurating the surfacc of the model hill, upstrean
of separation

(b} Dbetween scparation and reattuchment, the upper boundary
of the separation bubble

after rcattachment, the floor.

In our flow field the part (a) and (¢) are fixed and are well known. Thus,
a refercnce streamline can be found for rvegions (a) and (¢} at some height
up, and the streamtine zhove the sepuration region (which is rather short)
can ve tound by fairing between the two curves following the trend of

the reference streamline measured by the previous method. The remainder
of the procedure of stream’ ne construction is as was cutlined above.

In this manner two streamiines are obtained, namely, {1} the measured
streamline starting 5" above the crest, which was constructed from the
reference streamline by applying the continuity equation, and (2) the
lower boundary. Between these two streamlines the flow rates are g

at any section. Scme streamlines were interpolated between these two.

The streamlines and the separation region are shown in Fig. 5.

3.5 Measurement of Turbulence Spectra

Spectra of the u'-component of the turbulent signal was obtained
by means of a Bruei and Kjaer spectrum analyzer (Type B § K 2109), with
occasional cross checks aguinst results from a Technical Products Wave
Analyzer (Type TP 62). The former has a proportional band width,
passive filter system, while the latter works with z-tive constant
banawidth filters. Both set-ups for this evaluition .re shown in Fig. 14.

3.6 Measurencnt of Probability bDens.ties

lhe probability density distribution of a single turbulent component
was measured with a Technical Products probability analyzer (Type TP 647),
Fig. 15. Joint piobability densities were measured with two of the above
analyzers coupled together so that one provided the gate for the joint
probibility density obtained from the other, Fig. 16.

Normalization and calibration of probability analyzers were based
on a known input sinec wave, whosc rms value is close to that ¢f the hot-
wire turbulent signals. The probability density ¢f a sine wave e=Asin®
whose phase ¢ is a random variable uniformly distributed on the interv:!
il n . -
-y to = , is given by:

“

H

7 for ' e A
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A

otherwise
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Since the normalizing process has made all the amplitudes of different

3 . >
2 /g: 2 in such a way that Je< = ]

B

sine waves to be A =

the lowest point of the sine-wave probability density is found to be
N 1 - : v e . .

flo, = — = 0.225 , which was useu for caiibrating the x-y plotter,

An example is given in Fig. 17. As for the calculation after the analog
analysis, the main problem was to convert the measured ¢ values into
the real turbulent fluctuation units (in feet per second;. A graphical
integration based on the second-moment of the probability density was
suggested as a proper approach, 1.e.,

. 7 ¢ de ¢
uy [ ey *(ei) e. {46)

where uiz is the square of the rms value at point i and e iz the

value obtained from the probability aralyzer,

The experimental data for probability densities were plotted, both
for probability densities of single quantities and for joint probability
densities. Instead of establishing a 3-dimensional distyibution of joint
probability density, iso-probability density contour maps were plotted.
Conditional density functions were evaluated according to the definition,

flut,v') flut,v")
£t ' = 3 = 3 7
~( /U ) T(U') ? (4:)
J flut,v')dv?
and thus, the conditional probability density is given as
Prob(.ué <u' < ué + du', vé<v'5vé + dv'}
E(vi/u' = ul)dv' = — S = (48)

Prob[ u < u' < ué + du']

This equals the ratio of the mass in the differential element of Fig. 18
to the mass in the strip (ué , ué + du') . Thus, for a given ué

L]

the density f(v'/u' = u') 1is the ul - profile of joint density f(u'v')

normalized to make its area equal to 1 , (Fig, 18).

3.7 Measurement of Space Correlation Coefficients Along the Trajectories

Space correlations along trajectories were taken by passing the
outputs of two single hot-wire anemometers through a well-calibrated sum-
and-difference circuit instead of an analog multiplier (Fig. 19). The

calculations were only based on the rms values of inputs and outputs of the
sum-and-difference circuit,
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u,c = A2 e

2 2

lf——"—_‘—;_-_ /::'"'"‘__':__”
/ey + e3) D=C,

(e} - ep)?

where A ., A2 , are the calibration constants for hot-wire anemometers,
1 and 2, respectively, CS R CD , the calibration coenstants for sum (S)
and difference (D) circuits. Then
WY c 32 . 2
) ey (X)u) (x+6) (8/Cg) (D/Cp)
R\X,E}) = =

L2 2 4 ere
ut . u, 1 72

yields a relation for the space correlations when £ 1is the distance of

A

point 2 from point 1, and x is the location of point 1 in the reference
coordinate system.
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Chapter IV
THE EXPERIMENTAL RESULTS

The experimental work on this project was conducted in three
phases. These were:

1. Measurements of the mean wind vertical velocity profiles and
turbulent intensities at selected points on the lee side of a sinusoidai
hill using the Army Wind Tunnel, This work has been reported by Plate

and Lin (1865). Another more detailed flow pattern will be given in
this chapter.

2. Determination of theoretica' missile trajectories, corresponding
to mean wind conditions if the missiles werc fired from the lese side of a
scaled-up version of the two-dimensional ridge.

3. Determination in the wind tunnel of the characteristics of
the wind field at selected points along the scaled-down missile tra-
iectories, in accordance with the theoretical development given in
Chapter 11,

A fourth phese, not reported here, will be to calculate the response
cof the missile to the experimental wind fields determined in phase 3,

4,1 Determination of Mean Missile Trajectories

This work was conducted at the USA Ballistic Research Faboratories,
Aberdeen, Maryland, using the laboratory computing facilities and a six
degree of freedom multi-stage rocket traje .ory program,

The missile used for the mean t.ajectory calculation was a hypo-
t'.etical gun-launched two-stage ant.-tank missile. The gun launched
the missile at 1200 f/s. After a short delay, a booster section ignited,
the thrust from which accelerated the missile to a velocity of 2100 f/s.
At that point, a sustainer mo*or ignited, the thrust from which kept the
missile at a constant velocity until it reache.! a position about 1 km
from the launcher. In computeyr simulations, this missile was shown to

have a steady cross wind sensitivity of 0,36 mils angular deflection per
ft/sec of cross wind.

For the simulation study, the two-d:..nsional ridge used in the
tunnel was scaled up by a factor of 1200 to a ridge 400 ft high by 2000 ft
long. It was then assumed that missile launchers were emplaced at the
base of the ridge; halfway up the ridge, and at the top of the ridge.

All the launchers were pointed at targets o the lee side of the ridge,
the targets being 1 km from the launcher sites,
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The trajectorizs of missiles were simulated first for the no-wind
case and then for the case of the steady wind flowing over the ridge by
interpolating in the data from Plate and Lin (1965).

The missile trajectory data frow these simulations were then sent
to Colorado State University to be used in further experimental work,
The characteristics of the wind fields along the trajectories, shown in
Fig. 3, generated in the above study, is discussed in this report.

4,2 Mes. Velocitie. and Streamline Pattern

Mean velocity distributions are shown in Fig, 5. The solid lines
indicate velocities measured with a pitot static tube, while the dashed
lines refer to hot-wire measurements, On the whole, the agreement be-
tween the two sets is good, even without any corrections for turbulence,
The small deviations might just as well be due to drift in the hot-wire
characteristics, which could never be fully eliminated.

Characterictic of the flow field is the strongly accelerated riouw
above the crest of the model, which gives rise to the velocity maximum,
and the very sharp velocity gradients in the neighborhood of the separation
streamline, These velocity gradients interact with the turbulent shear
stress to cause a large increase in the amount of turbulent energy of
the f1.w.

Vertical mean velocities can be determined from the mean streamline
pattern shown in Fig. 5. The streamline pattern also shows the separation
region, Under the separation streamline, the velocity gradually decreases,
reaches 2@ro and reverses direction, This can be inferred from the fact
that the discharge across any vertical section underneath the separation
streamline must be 2ero. The experimental data, however, fail to show
this behavior due to the fact that the pitot tube cannot measure any
backflows, while the hot-wire cannot distinguish the flow directions,

4,3 Turbulent Intensities and Shear Stresses

The turbulent quantities u'? and v'2 , and the turbulent shearing
styess u'v' were plotted against y in Fig. 13. The turbulent quantity
w'“ was also determined at a number of points and generally behaved roughly
like the u-component. The shear stresses u w were calcuiated and found
to be negligibly small even in the bubble region. The profiles shown in
Fig. 13 have a strongly peaked shape in the neighborhood of the separation
streamline, especially for short distances from the separation point on
the hill slope. 1In general, the intensity profiles of u component based
on values which had not been corrected for the flow direction coincide
with those obtained by Plate and Lin (1965) and thus the reproductibility
of the turbulent flow field in the present tunnel is quite satisfactory.

4.4 Turbulence Spectra and Dissipation Rates

Turbulence spectra were evaluated for all points indicatea in Fig. 9.
The signal is plotted in the form %’L‘/s vs. f (Fig. 20 through Fig, 28).

Here ;;5/8 is the enerygy density, per Hz , of the electrical signal
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from the hot wire as passed through the filter of bandwidth B and of
center frequency f of the spectrum analyzer. It differs from the
energy level cof the turbulent motion by a calibration factor given by
the square of the slope of the calibration curve U vs. E of the hot-
wire anemometer.

In the iow frequency range, we notice a strikingly different
spectrum shape close to the hill crest (x = 0) as compared to the
results at 16 inches downstream. t short vertical distances from the
wall, the data close to the crest (Fig. 22) indicate a much slower drop-

off with frequency than the set of data shown in Fig, 25. In fact, there

seems to exist a well-developed region, between 40 and 200 cps, in which
the energy level decreases almost linearly. This behavier is character-
istic of strong interactions between mean flow and “urbulence, i.e.,

of a flow when a large amount of turbulence generation due to large
velocity gradient tales place. This behavior is not typical for other
boundary layer flows of the U.S. Army Wind Tunnel,

Due to strong noise levels of the magnetic tape recorders, the
part of the spectra correspoading to frequencies above 2000 Hz is not
usable. For large frequenc.es, but below 2000 Hz, the shape of the
spectrum is the same for all data. In fact, if the spectrum is plotted
in the similarity form of the universal equilibrium law of Kolmogoroff,
we find that the shape is identical for all data, and they collapse on
a single curve. This is illustrated in Figs., 29, 30, 31, 32 and 33, in
which the data of Figs 22, 23, 25, 26 and 28 have been replotted in
dimensionless form:

k . )
$ (=) = NF() (s0)
S
¢ 1s the non-dimensional spectral density, F(f) 1is the measured
spectral density at frequency f , and N 1s a conversion factor:
NooutdT 51
— “vfl 4 v 74

Furthermore, KS is the reference wave number based on the dissipation
€

KS = ((v-s) 174 (52)

As an estimate for the dissipation ¢ we have used the isotrupic
relaticnship:

‘SGT“: ~i3'3u’ 2 »
and also, the equivalent form
¢ = 15 u'?j K2£(K) dK (54)
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where K is the wave number

k = 2 (55) S
U’ .

and U is the mean velocity, as before. Dissipation rates calculated
from Eqs. (53) and (54) are shown in Fig. 34,

In Figs., 29, 30, 31, 32 and 33 we have also indicated the -5/3 LB
law of the inertial subrange and the wniversal shape of the high fre- R
quency and of the turbulence spectrum, in the form given by Sandborn .
and Marshall (1963). It is.surprising to see that the high frequency S
end of the spectrum in the highly disturbed boundar- layer of our case '
is presented exactly by the high frequency shape of the undisturbed
turbulence in a boundary layer along a flat plate. Since Sandborn and
Marshall have demonstrated the perfect agreement of their spectra with
experimental results obtained in wind over ocean waves by Pond et al.,
(1963), it appears that this range of the spectrum is a universal feature
of all turbulent flows.
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But the same conclusion cannot be drawn for the turbulence spectrum e 3 :

in the inertial subrange. Pond et al., report that here a spectrum law
of the form is valid
K -
N F(f) = k (g (56)

where k is a universal constant, about 0.46. For the data of this re- ;
port, it is found very near the crest of the model »ill, this '‘constant" -
is well enough verified, but at larger distances downstream, in the
region which derives its turbulence from the initially strong gradients
in the mean velocity across the separation streamline, the 'constant"
' seems to be substantially higher., At 16" (Fig. 31) downstream from the
; hill rrest, the best fitting -5/3 law has a constant k of about 0.85.
It should be noted that in the velocity region where this is found the 1 3
turbulence level decreases rapidly with distance, indicating that the - bj
| amount of energy generated locally is lower than that dissipated, i.e., ' 3
£ the ratio of dissipation to generation

7 N 00 TN A iogt %

D = (57

€
UIVl

&

in this region is greater than one. Tiis result thus is in qualitative

agreement with a result of Margolis and Lumley (1964). It has as yet,

‘ however, not been shown that a3 universal relation exists between k and
i D . Experiments are at present underway at Colorado State University

' to investigate this point. That D might also be an important quantity
in modeling of atmospheric turbulence has been pointed out by Plate and
Lin (1966).
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The low frequency end of the spectrum is governed by the process
of energy extraction from the mean flow and depends on the local velocity
field, Similarity forms can, therefore, not be expected for the whole
spectrum., But the eddies associated with the low freaquency end of the
spectrum input cause the most important dynamic effect on a missile during
its flignt. Work is therefore in progress at CSU on relations between the
low frequency end of the spectrum and the local mean velocity field.

4.5 Probability bensity Distributions

Two different sets of probability densities are given for the
points along the trajectories. These are probability densities of the
v', of the ' components (Figs. 35-42), and joint probability densities
of u' and ' ,(Figs. 43-50).

The density of each individual turbulent component seems quite
well represented bv a Gaussian (normal) curve except the mean value is
not exactly zerc. This is illustrated by plotting cumulative probability
densities on probability papers (Figs. 51-54). The angle 6 of the joint
probability density contour as calculated by Eq. (26), which is based on
the assumption of a zero mean density, is surprisingly close to the
measured angle 6 obtained directly from the two-dimensional contour of
joint probability density (Table III). Most of probability densities
also show the evidence of skewness. Numerical evaluation of the skewness
factor is not necessary for this study, but the reason for this skewness
could always be interpreted as the resuit of the preferred direction of
fluctuation of the turbulence component due to the shear stresses. This
phenomenon could be strongly show for those points along the separation
streamline and somewhere within th: bubble region because of the complex
interactions of the three-dimensional turbulence,

Flatness of the probability density, which was suspected as the
result of turbulent intermittency, was not obviously seen among our

measurements which were usually performed in the fully turbulent boundary
layer.

In order to check the statistical independence of w' from u’
joint probability density distributions f{u', w') are measured. As
mentioned in a previous section, the homogenuity of turbulence in
plane parallel to the ground requires that u'w' be zero, which was
confirmed by our experiments. But it is also necessary that for each
value of u' , f(w''u') be independent of u' and equal to f(w').
To check this criterion (which gives a sufficient condition for sta-
tistical independence) we have plotted into one graph f(w'lu') for

’

different values of u' as well as f(w') . Some results are shown in
Figs. 55-59. They indicate that u' and w' are not exactly jointly

Gaussian, even though u' w' was found to be zero from hot wire measure-
ments, which is not a sufficient condition to conclude that w' 1is inde-

pendent of u' for the slightly non-Gaussian curves observed in this
study.

We next checked joint probability density distributions f(u'., u’
‘ 1
gepending on the direction ot the tra-
azimuth these typical measurements

i-1
Different results were obtained

jectory. For a trajectory of 60
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are shown in Figs. 60-62. The resuits indicate that no correlation exists
for turbulence components u',  and u', . This 1s evident from the co-
incidence of the axes of the elliptical contours with one of the axes. It
implies that the distance between the two points has becn chosen too wide,
so that lhe integral length scale is somewhat smaller than the distance
between adjacent points.

o __. A
For the case of 60" azimuth, the assumption of an elongated eddy

structure with ul' related only to wu,' 1is not justified. The only

way of obtaining an impact dispersion probability distribution is found
by assuming statistical indeperdence between neighboring points along
the trajectory, with the resulting inconsistency in the averaging pro-
cedure for the average velocity encountered by the missile in traveling

from x. to x.
i-1 i

1-1
trajectery in the mean wind direction (OO azimuth) are considered, strong
correlations are found as is demonstrated in Figs. 63-65. The results
are even better illustrated by considering directly the space correlation
functions along different trajectories, which are plotted in Fig. 66,
Two trajectories were added, trajectory 2 which starts halfway down the
hill slope, and trajectory 3 which starts at the crest of “he ridge.
For correlation functions which start at the hill directly, co-relation
distances are rather short: aiready at 1" downstream from the hill the

When joint probability densities for u! and u,' lying on a
1

correlation between Uy and U has decreased to a correlation co-
efficient r = 0.2 |, where
u.' u!
1 1-1 .
T = —— LDb)
U, ¢ ut
1 1-1

For correlations starting at larger values than x = 4" the correlation
coefficients for both trajectories seem to follow a fairly constant
correlation curve, with approximately ¢qual shape and furtnermore, with
a shape which is approximately exponential. The exponential curve which
sppears to give the best fit has been sketched into the cxperimental
results. It is represented by the equation:

r«e X (59)

. R o . . .
when a is a constant equal to 2.2 in . This result implies that in
the outer region {further downstream than 1" from the ridge) the joint
probability distribution f\ui, u; 1) can be specified by the magnitudes

2 3
ui and u;_l and by the curve expressed by [Fq. (591, Ir u; {_1
can be approximately represented by Gaussianity. The latter vields the
numerator, and the former the denominator of Eq. (J6) with

and u

u'

taking
N - ' L ~ . [T
Fhe place uf viowhile ubo takes the place of u'. 4 diffrculty an
Interpretation arises, however, if u. happens to be cqual
i ,

(S
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nearly equal to u gy - In that case, we may let ut = Aui and

ut ;o= U, where A 1is any positive constant factor in order to

either enlarge or contract the values of u, in such a way that ut

and ut_, are numerically quite different from Eq. (21) and assuming
again m =m = 0 for simplicity,
u, u,
i i-1
f(u,, u, ,) ut
f(lH',Uf ) = 1 i-1 =1f(l’u+ ) = 1
1 1-1 J (u. u. ) A A 1-1
i’ Ti-1 21A0. © Jl-p2
u, u,
i 7i-1
2 2
ut ut ut u#
o J 1 1 - 2p 1 1-1 . 1-1 (60)
2(1-p2) Aou Aou % %
P i i i-1 i-17 J!
)

Now, following the same procedure in deriving our Eq. (26), we may obtain

2A ui ui_1
Tan 20 = ——— " 61)

A2 u, 2. y2
i i-1

But this angle 6 can only be used to specify f(u;, uI-l) , and of

course, f(ui, u.

1—i) can also be specified by a little transformation

technique.

For the region between 0 and 4' along the trajectory, it is
necessary to know the coefficient o for each length section, which can
approximately be found by linear interpolation. It is thereby assumed
that the correlation function is exponential between point X; and
X 1 Thus, even though at larger distances the same exponential does
not fit all the data, it is possible to make the assumption of Markoff
dependency over a short reach, with at least engineering accuracy. -
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Conclusions

In the report we have given experimental evidence that the
turbulence structure in the complicated flow fieid downstream of a
model hill can be represented tu a good approximation by Gaussian and
jointly Gaussian probability distributicns connected by space correla-
tion functions which appear exponential. The joint proba . ity den-
sities are seen to be fully specified by the variances of the two
variables and their first order cross correlation.

The -esults of this - .udy indicate that it is possible to
construct a medel of the - .ssile dispersior probability distribution
by simply determining the variance of this distribution. Research
towards this objective is currently under way at CSU.
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¥ TABLE 1
B Mean Velocity Calculation
X y X y 1
8 in pt in Umv YeuT in  pt in Um Up7
“a
ax 2" 6 3.89 22.4 29.4 g" 18 1.35 3.6 -
7 3.98 29.0 27.8 19 1.52 4.4 -
& 4,09 31,8 333 200 1.9 7.9 10.1
9 4,22 32.0 33.3 21 2.0 106 119
10 4,68 31.8 32.9 22 216 136 i5.5
11 5.1 32.0 232,51 19,7 20.2
6.0 31.4 313 28 302 22,6 23.%
8.0  3i.2 30.8 25 4.8 247 253
100 51,0 30,7 6. 26,3 27.4
15.0  31.0  30.3 8. 27,2 28.3
20,0 309 30.6 10, 28.5  29.3
24.0 30,7 30,2 15, 295 30.2
20, 30.3  30.6
4" 12 3,35 16.2 19.2 24, 30,3 30.4
13 3.49 26,5 ¢ 4
14 3.60 27.3 5 10" 0.05 1,15 1,707
15 3.84 29.0 Iy.8 7 5.15  1.707
16 4.3 200 9.7 1.15  7.96 8.18
17 5.25 29.8 29.7 1.65 i6.8 12,77
6.0 29,5 30.1 2.2 22,5 17,
8.0 3.3 30, 3.3 24, 23.35
10 30.5 30.1 5.43 25,8 25.72
15.0 30,5  30.3 8, 273 26.72
20,0 31,  30.5 10, 28.5  28.2
2490 30,7 305 15. 29.5 30,06 ,
20, 30.6 31
6" 246 10,2
2.53 16.6  8.18 12" 26 0,12 3.8 -
2,81 241 17.v0 27 0,73 5.9  5.12
3.29 20,2 23.22 28 1.12 8.0 9.2
4.0 27,4 24,58 29 1.0 1.1 13.3
6. 28,6 26,77 30 1,75 14.4 15,
8. 29,7 28,26 31 2,66 20.0 20.9
10, 30.4  29.2 32 5.00 24,0 20.2
15, 51,0 30.5 7.14 254 25,0
20, 3.4 31,16 9, 27. 27.4
12, 28,2 28.5
15. 28,9 29,5
23,3 299 30,3
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TABLE I {Continued)

T ———— L >a iy R A WAL R s A

X y b4 X Y 1] i
in pt in w Vet in  pt  in mi Ypo7
14" 0.05 2.7 - 24m 41 0,12 12, 12,81
28 4,14 - 44 1,06 15.8 17.31
4 6.0  6.15 45 1,20 16.2 16.85
62 7.96 8,86 46 2,73 18,8 20,25
1,05 11. 12 .31 47  6.16 23.9 23,85
1,58 16.6 15,55 8, 25,7 25.2
2.0 19, 17.16 10. 26.4  26.24
2,67  21.35 19.62 12,5 27.55 27.65
4, 22.64 22,44 15, 28.20 28.58
, 8. 26,8 26.4 20, 29,3 29.4
' 10, 27.5 27,64
55, 28.9 29,58 32 48 0.14 14, 14,02
20. 30.4  30.64 49 .50 16.5 16,85
50 3.58 20.9 21,82
le" 33 0,12 5.8 9,66 51 6.74 4. 25.55
4 28 8.4 11.32 10. 26,55 26.8
35 69 10,2 13.87 12.5 7.1 27.3
36 .26 10,8 15.17 15, 28.1 28,56
37 1.56 13.8 18.07 20. 29.4  29.48
2 38 2,2 18,2 19.62
it 39 3,22 20, 22,6 40" 52 0.1 14.5 15,4
i 40 6.5 23,8 25,9 53 2 16,5 16,57
i 8. 25.8 26,98 54 4,16 22,2 22.4
o 10. 27.8 28.5 55 6,32 23,9 24.44
15. 28,6 30, 7.5 25,1 24.75
20. 29.9 30,7 10. 26,2 26.3
12,5 27,4 275
18" 05 7.4 9,66 15, 28.0 28,2
.13 9,55 11.45 20, 29.4 29,34
.37 10,95 12.66

.95 14,05 13.44

2. 19.5 7.4

2.9 20,85 20.42
4. 22,3 22,6

8 26,3 26.42
10, 27,7 27,76
15. 29,5 29.6
20, 30,2 3v.04
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TABLE II

Tuvbulent Calculation
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TABLE II {Continued)
X pt y u'? c il uty' w!? ufy!
2" 6 3.89 R7.7 .227 18.51 -10.06 22.9 ~.455
7 3.98 26.5 .209 28.60 -11.89 13.9 ~.u71
8 4.09 5.37 175 5.635 - 3.36 5.93 ~.G367
9 4.22 2.46 .14 7.568 ~ 2.64 6,58 ~.011
10 4.08 1.88 . 105 1.869 - 0.657 4.92 ~.005
11 S.10 1,70 .0872 1.398 - 0.354 4.99 ~.014
10.00 .69 .0349 0.6976 - 0.227 .230 -.0283
15.00 .388 0175 0.1157 - 0.0574 076 ~. 0505
17.00 72 - 0.149 - 0.048 081 +.0586
20.00 018 - 0.0233 - .0095 0113 +.067
4" 2 3.35 11.8 .314 19.42 -17.05 24.4 -.002
13 3.49 8.48 .262 14,57 12.16 18.62 -.017
14 3.60 4.96 .244 3.345 - 2.372 8.95 +.0005
15 3.84 2.72 .244 2.542 ~ 1.405 4,27 ~.001
i5 4,63 2.20 .192 1.713 - 0.925 3.41 +.059
i7 5.25 1.90 140 1.488 - 0.699 2.91 +.021
10.00 1.08 .0175 0.604 - 0.362 .585 +.036
13.00 0.69 ~ 0.29 - 0.147 .302 +.036
15.00 .337 - 331 - $.088 077 +.040
20.00 .028 - .041 - .0094 010 +.042
8" 18 1.35 1.90 .525 432 - .611 2.36 ~-.045
19 1.52 5.20 .489 1.26 - 1.161 3.28 +.075
20 1.90 11.85 .14 5.20 - 4,76 12.80 +.0475
21 2.00 19.54 .087 6.09 - 6.59 21.9 +.0725
22 2.16 24.00 035 22.0 - 7.86 28.5 +.0775
23 2.51 2.75 L0175 6.4 - 3.804 17.56 +.12
24 3.12 4.99 .035 .956 - .467 1.15 +.0378
25 4.86 2.56 .035 .574 .096 3.55 0
5.00 1.89 .035 .47 - 057 1.18 ~-.019
10.00 .743 L0175 .297 - 0,024 .355 +.021
15.00 .388 - .08 - .074 .098 +.0245
17.50 .11 - .028 - .0669 012 +.0012
20.00 .02 - 013 - .0087 .003 -.0035
12" 26 0.12 2.24 .31 - 0.178 1.93 .025
27 .73 R.78 - .14 - /6 10.72 .08
28 1.12 16.3 L1758 5.61 - 5.74 18.50 142
29 1.50 25.3 .262 14 .23 -14.96 19.9 .123
30 1.75 30.3 .245 14.28 -15.84 21 .102
31 2.60 6.2 .175 12.80 - 7.62 11.2 .085
32 7.14 1.42 .07 0.79 - .46 2.0 .008
10.00 1.04 .035 .23 - .175 043 .043
15.00 .38 0175 20 - 112 07 033
18.00 .07 - .UBo .034 L0209 .005
20.00 L0186 - .005 - 0085 L0136 "

4t WA
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TABLE II (Continued)

%

. X pt y u' € v'e u'v' u'w'
16" 33 0.12 7.3 - 0.39 - 0.19 8.64 +.101
34 .28 10.55 - 15.55 - 2.51 15.7 115
35 .69 19.0 - 15.05 - 4.06 18.6 .104
36 96 17.4 - 16.35 ~ 7.08 19.5 .061
37 1.56 16.6 - i7.24 - 6.62 19.5 .037
38 2.20 12,1 - 19.65 - 7.13 17.2 046
39 3.32 4.0¢9 - 5.69 - 1.81 6.6 .021
40 6.50 1.48 - .998 - .423 1.5 047
10.0 .84 - .551 - .223 .21 .033
15.0 .242 - .186 S VIRY: .15 .045
i8.0 .109 - .102 - .04862 .022 .008
20.0 .0275 - .000 - .0031 019 .003
24" 41 .12 .12 - 5.33 - .582
44 1.6 14.0 - 4.00 - 2.63
45 1.2¢ 13.8 - 4.05 - 2.86
46 2.73 8.29 - 5.31 - 3.33
47 6.16 2.27 - .70 - .064
10.0 .755 - .565 - .16
12,50 .60 - .55 - .247
15.0 .302 - .433 - ,139
20.0 .0490 - 0 - .0071
32" 48 .14 5.26 - 2.86 - .935
3 49 .50 7.33 - 2.42 -1.21
S0 3.58 6.02 - 5.08 - 3.00
51 6.74 2.025 - .975 - .528
10.0 1.221 - .159 - .2e8
12.5 .735 - .025 - .,0413
15.0 .302 - .236 - .075
20.0 L0063 - 015 - ,00136
40" 52 .10 4.72 - 6.38 - 3.29
53 .20 4.94 - 5.51 - 2.29
54 4.16 4.88 ~ 3.67 - 2.03
55 6.32 2.40 ~ 1.76 - .915
10.0 1.29 - .07 - .193
12.5 .72 - 175 - .044
15.0 .42 - 176 - .0615
20.0 .057 - .019 0
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TABLE III
; -1 2 u'v!
g = 1/2 tan 55§~—5:Q
x Z y ""—';')- e - e
' pt (in) (in) {in) ] ut” A utve (deg)
12 4 4R 3.35 16.2 11.80 19.42 -17.05 38.7
14 4 4R 3.60 27.3 4.96 3.35 - 4.74 35.6
21 8 4R 2.00 13.6 19.54 6.09 - 6,09 21.2
22 8 4R 2.16 13.6 24,00 22.00 - 7.80 41.3
24 8 4R 3.12 22.6 4,99 0.96 - 0.47 2.8
27 12 4R 0.73 5.9 8.78 0.14 - 0,76 5.0
28 12 4R 1.12 8.0 16.30 5.61 - 5.74 23,5
30 H 4R 1.75 14 .4 30.30 14,28 -15.84 31.5
31 12 4R 2.66 20.0 6.20 12.80 - 7.62 33.3
33 16 4R 0.12 5.8 7.30 0.39 - 0.19 1.0
36 16 4R .96 10.8 17.40 16.35 - 7.03 41.7
37 16 4R 1.56 13.8 12,10 19.65 - 7.15 45.0
38 16 4R 0.9¢ 10.8 16.60 17.24 - 6.02 31.0
44 24 4R 1.06 17.9 12.10 19.65 - 7.13 13.9
48 32 4K 0.14 13.22 5.26 2,86 - 0,94 19,C¢
49 32 4R 0.50 7.08 7.33 2.42 - 1.24 13.4
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